Additive-free synthesis of unique TiO2 mesocrystals with enhanced lithium-ion intercalation properties†

نویسندگان

  • Zhensheng Hong
  • Mingdeng Wei
  • Tongbin Lan
  • Lilong Jiang
  • Guozhong Cao
چکیده

Unique nanorod-like mesocrystals constructed from ultrathin rutile TiO2 nanowires were successfully fabricated for the first time using a low-temperature additive-free synthetic route, and the mesocrystal formation requirements and mechanism in the absence of polymer additives were discussed. The ultrathin nanowires were highly crystalline and their diameters were found to be ca. 3–5 nm. The rutile TiO2 mesocrystals were formed through homoepitaxial aggregation of the ultrathin nanowires via faceto-face oriented attachment, accompanied and promoted by simultaneous phase transformation from the precursor hydrogen titanate to rutile TiO2. The rutile TiO2 mesocrystals thus synthesized were subjected to detailed structural characterization by means of scanning and transmission electron microscopy (SEM/TEM) including high-resolution TEM (HRTEM) and selected area electron diffraction (SAED), X-ray diffraction (XRD) and Raman spectroscopy. The rutile TiO2 mesocrystals were tested for lithium-ion intercalation and demonstrated large reversible charge–discharge capacity and excellent cyclic stability, which could be attributed to the intrinsic characteristics of the mesostructured TiO2 constructed from ultrathin nanowires offering large specific surface area for intercalation reaction and easy mass and charge transport, as well as sufficient void space accommodating volume change.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Enhanced intercalation dynamics and stability of engineered micro/nano-structured electrode materials: vanadium oxide mesocrystals.

An additive and template free process is developed for the facile synthesis of VO2 (B) mesocrystals via the solvothermal reaction of oxalic acid and vanadium pentoxide. The six-armed star architectures are composed of stacked nanosheets homoepitaxially oriented along the [100] crystallographic register with respect to one another, as confirmed by means of selected area electron diffraction and ...

متن کامل

Nanoporous anatase TiO2 mesocrystals: additive-free synthesis, remarkable crystalline-phase stability, and improved lithium insertion behavior.

Unique spindle-shaped nanoporous anatase TiO(2) mesocrystals with a single-crystal-like structure and tunable sizes were successfully fabricated on a large scale through mesoscale assembly in the tetrabutyl titanate-acetic acid system without any additives under solvothermal conditions. A complex mesoscale assembly process involving slow release of soluble species from metastable solid precurso...

متن کامل

Self-assembled nanoporous rutile TiO2 mesocrystals with tunable morphologies for high rate lithium-ion batteries

ont matter & 2012 n.2012.02.009 thors. : wei-mingdeng@f .edu (G. Cao). Abstract Wulff-shaped and nanorod-like nanoporous mesocrystals constructed from ultrathin rutile TiO2 nanowires were successfully fabricated for the first time in the presence of the surfactant sodium dodecyl benzene sulfonate (SDBS). SDBS played a key role in the homoepitaxial selfassembly process, in which titanate nanowir...

متن کامل

Mesocrystals : Applications and potential

Keywords: Mesocrystal Non-classical crystallization Nanoparticle Energy conversion Photocatalysis Lithium ion battery Mesocrystals are superstructures of nanoparticles with mutual order and can be intermediates in a non classical particle mediated crystallization reaction. Mesocrystals have various potential applications as functional mate rials due to their unique combination of nanoparticle p...

متن کامل

Additive-free synthesis of 3D porous V2O5 hierarchical microspheres with enhanced lithium storage properties

A facile synthesis of novel 3D porous V2O5 hierarchical microspheres has been developed, based on an additive-free solvothermal method and subsequent calcination. Due to their unique structure, these V2O5 microspheres display a very stable capacity retention of 130 mA h g (1) over 100 cycles at a current rate of 0.5 C, and show excellent rate capability with a capacity of 105 mA h g (1) even at...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011